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Abstract

Experimental design is a key challenge in science and engineering. Classical
experimental design associates experiments with states that can freely be chosen.
We consider the rich case where the structure of a given Markov Decision Process
constrains the choice of experiments. Additionally, many real-world experiments
have safety constraints. Certain states or actions may be dangerous or simply
off-limits. At the same time, we often want to learn about some unknown quantity
in the unsafe region. This problem is relevant in many real-world settings, from
robotic inspection of industrial sites to nuclear fusion. We propose a safe state-
action density constraint set that guarantees safe policies. Additionally, we propose
a new reweighted experimental design objective that leverages correlation between
the safe and unsafe regions. This allows us to estimate an unknown quantity in
the unsafe region from observations in the safe region. Finally, we provide both
theoretical and experimental analysis of the convergence.

1 Introduction

Optimal experimental design is a ubiquitous challenge in science and engineering [9]. Given some
fixed budget, we want to learn as much as possible about some unknown quantity. During experiments,
we gather observations and use them to estimate the unknown quantity. In the Multi-Armed Bandit
literature experiment, states can freely be chosen. We consider the case where one can not freely
choose the states of the experiment. Instead, one traverses the possible states according to some
known Markov Chain. In this setting, every experiment is associated with a policy that can be
rolled out in the Markov Chain. Thus the goal of learning about the unknown quantity reduces to
finding a policy that allocates the budget of observations optimally. Previous work in this direction by
Tarbouriech et al. [11], and Mutný et al. [7], already established algorithms that provably converge to
the optimal policy.
In this work, we extend the previously introduced setting to the important case of safety-critical
experiments. For many real-world experiments, it is essential to remain in a safe region of the
state-action space. Unsafe states or actions may cause harm to people or equipment and must be
avoided at all costs. At the same time, we might also be interested in estimating the unknown quantity
in the unsafe region. Consider the illustrative example in Fig. 1. A robot is used at an industrial
site to measure a gas concentration. At the site, the gas concentration is highly correlated between
pipes and compressors, respectively. Part of the site is restricted for the robot and contains many
pipes. Current state-of-the-art methods do not consider the correlation between safe and unsafe
pipes. Accordingly, they will visit the pipe less frequently since there are more safe compressors then
pipes. This behavior is not optimal if we want to estimate the gas concentration over the whole site.
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Figure 1: Illustrative Example: A robot measuring
the gas concentration at an industrial site. There
are pipes and compressors. The red area is re-
stricted and contains six pipes.

There are two significant challenges associated
with this setting. Firstly, we must ensure that
a policy never visits unsafe states or performs
unsafe actions. Clearly, it is not easy to guaran-
tee safe policies for nondeterministic dynamics.
We also need to know what states and actions
are safe. Secondly, we must learn about the
unknown quantity at states and actions we are
not allowed to visit. Without any regularity as-
sumption on the unknown quantity, this is not
possible. Accordingly, we restrict the problem
to Markov Chains with deterministic dynam-
ics and a known and fixed safe state-action set.
Moreover, we assume the unknown quantity has
some regularity, a known kernel structure in our
case.
We tackle the first challenge by introducing a safe state action density polytope and constraining
optimization over it. We then leverage the known kernel structure in the objective to incentivize
policies that estimate the unknown quantity both in safe and unsafe areas. Overall our contributions
are the setting of Safe Active Exploration in MDPs, provably safe policies, and a reweighted opti-
mization objective that considers the correlation between safe and unsafe states. Finally, we provide
a theoretical convergence analysis and evaluate our findings in an experiment with an invariant
correlation structure and one with a general correlation structure.

2 Preliminaries

2.1 Optimal Experimental Design

Optimal experimental design (OED) is concerned with the sequential design of experiments [5] where
the unknown quantities are elements of a Hilbert space [9]. The unknown quantity is often a function
f , which is linear in the parameters θ or features Φ(x) of experiments and is to be estimated using
noisy observations. Given a limited budget of n ∈ N, the goal of OED is to choose n experiments
that minimize a particular objective, commonly the second moment of residuals f − f̂ . A brief
introduction to the application of convex optimization can be found in [1]. The second moment of
residuals is matrix-valued in general, and thus, one commonly uses scalarizations s : S+ → R, such
as s(Σ) = − log det((·)−1) or s(Σ) = Tr(·), referred to as D-optimal design and A-optimal design,
where S+ is the space of p.s.d. matrices [9].

2.2 Active Exploration

In optimal experimental design, we assume that the experiments are chosen from the set of possible
experiments without restriction. Mutný et al. [7] and Tarbouriech et al. [11] extend experimental
design to the setting where the structure of a given MDP constrains the choice of experiments.
Tarbouriech et al. [11] consider independent observation distributions ν(s) per state s ∈ S. In
contrast, Mutný et al. [7] assume the unknown quantity to be a function f on state-action pairs
possessing certain regularity, namely f belonging to a RKHS Hk with known kernel k.

2.3 Reproducing kernel Hilbert space (RKHS)

A RKHS is a Hilbert space where all point evaluations are bounded linear functionals. This means
that for a Hilbert space H of functions on some domain X , for all x ∈ X , f ∈ H, there exists
Φ(x) ∈ H such that f(x) = fTΦ(x), where ·T · denotes the inner product in H [12]. A function
k : X × X → R is a kernel if there exists a Hilbert space H and a map Φ : X → H such that
for all x, x′ ∈ X k(x, x′) = Φ(x)TΦ(x′) [2]. Due to the Representer Theorem [6] we know
that the minimizer of the regularized empirical risk functional f̂ = argminf∈H

∑n
i=1(f

TΦ(x)−
yi)

2 + λ∥f∥H can be represented as a finite linear combination of feature space mappings of points
f̂ =

∑n
i=1 α̂iΦ(xi). The minimizer α̂ can be computed using the closed form solution of kernel

ridge regression α̂ = (K + λI)−1y, where Kij = Φ(xi)
TΦ(xj) [2].
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2.4 Markov Decision Process (MDP)

An MDP [10] is a tuple M = (S,A, P,H, r, s0), where S is a state space, A is an action space, P
denotes the transition model P : S ×A → ∆(S), such that P (s′|s, a) is the probability to transition
to state s′ when choosing action a in state s, H is the episode horizon, r is a reward function
r : S × A → R where r(s, a) is the reward obtained for playing action a in state s and s0 is the
initial state.
A policy π is a sequence of decision rules (πh)

H
h=0 that map a state-action pair to probabilities over

actions, i.e., πh : S × A → ∆(A). A policy π induces a distribution η ∈ ∆(Th) over trajectories
where η(τ) is the probability of generating trajectory τ when following policy π and Th is the set
of trajectories (sh, ah)Hh=0 of length h. A policy also induces a distribution over state-action pairs
dπ = Eτ∼η[d], where d(s, a) = 1

H

∑
(sh,ah)∈τ 1{(sh, ah) = (s, a)}.

2.5 Convex Reinforcement Learning (RL)

Convex RL due to Hazan et al. [3] and Zahavy et al. [13] considers objectives U(d), that are convex in
the state-action distribution. It employs the Frank-Wolfe algorithm, which gradually builds a mixture
policy π∗ corresponding to the optimum U(d∗). We give a quick review of the most important
components of the algorithm:
Mixture Policy A mixture policy refers to a convex combination of policies. We denote this
mixture policy as πmix,n = {(ai, πi)}ni=0. A notable characteristic of mixture policies is that
the induced state-action distribution follows a convex combination of the individual policies, i.e.,
dπmix,n =

∑n
i=0 aidπi

. Finally, a mixture policy can be represented by a single policy through the
process of marginalization: π(a | s) = dπmix

(s,a)∑
a dπmix

(s,a) .

Density Estimation: Given an individual policy πi, the density estimation oracle estimates the value
of dπi . In the case of tabular setting, the dπi can be estimated easily by applying the transition
operator Kπi , see Appendix B.2. For known MPDs, the state action distribution can be estimated by
simulating the policy πi, and there is no need for interaction with the real environment.

Policy Search After estimating dπmix,n we can introduce an additional element πn+1 to the mixture
policy by solving the following problem:

πn+1 = argmin
π∈Π

∑
s,a

dπ(s,a)∇U(dπmix,n(s, a)) (1)

This is a classical reinforcement learning problem where the gradients of U serve as the reward
function. As a result, it can be implemented via any of the exact solution methods, e.g., value iteration,
policy iteration, and linear programming. The new policy’s weight an+1 can be calculated via line
search. Finally, the new mixture policy is πmix,n+1 = (1− an+1)πmix,i ∪ (an+1, πn+1).

3 Safe Active Exploration

Let M = (S,A, P,H, f, s0) be a known and deterministic MDP with episode length H. Our agent
can operate in a known and fixed safe set Bsafe ⊂ S×A and is not allowed to enter Bunsafe := Bc

safe.
There is a fixed budget of T trajectories of length H . An unknown quantity f , part of a RKHS f ∈ Hk

with known kernel k((s, a), (s′, a′)) = Φ(s, a)TΦ(s′, a′) and bound ∥f∥Hk
≤ 1

λ , is defined over
(s, a) ∈ S ×A. We have access to noisy observations of the unknown quantity y = fTΦ(s, a) + ϵ
where ϵ ∼ N (0, σ2). The goal is to estimate a linear functional of the unknown function (potentially
over the unsafe region):

Find Cf̂T where: f̂T = arg min
f∈Hk

T∑
i=1

∑
(s,a)∈τi

(fTΦ(s, a)− yi,s,a)
2 + λ∥f∥Hk

4 Method

As typical in optimal experimental design, we minimize the second moment of the estimation error:

ET = Eϵ[C(f − f̂T )(f − f̂T )
TCT ]
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To ensure safety, we define a safe state-action distribution polytope.

Dsafe := {d |d(s, a) ≥ 0,
∑
s,a

d(s, a) = 1,
∑
a

d(s′, a) =
∑
s,a

d(s, a)P (s′|s, a),

∀(s, a) ∈ Bunsafe. d(s, a) = 0}

Mutný et al. [7] derive a convex upper bound for the second moment of the estimation error. A first
naive approach is to use this objective and simply add the safe state-action distribution polytope to
the constraints:

min
dπ∈Dsafe

U(dπ) := s

C

 ∑
(s,a)∈S×A

Hdπ(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

−1

CT

 (2)

where s(·) is a convex scalarization function. However, note that all the features Φ(s, a) from the
unsafe region cancel, since dπ(s, a) = 0 ∀(s, a) ∈ Bunsafe. Since Mutný et al. [7] usually set
C = I, we lose the correlation information to the unsafe region. In the next two sections, we present
two approaches to recover this correlation information in the objective.

4.1 Evaluation Functional Approach

The linear functional C is a matrix in the finite-dimensional case. We choose the rows of C to be the
features of the state-action pairs that we want to evaluate, i.e., (C)i = Φ(xi)

T , where xi = (s, a)i.
Then, since f belongs to a RKHS, we have (Cf)i = Φ(xi)

T f = f(xi). Thus, the diagonal entries
of the matrix representing the second moment of residuals are

(C(f − f̂T )(f − f̂T )
TCT )ii =

(
f(xi)− f̂T (xi)

)2
and therefore, we have

Tr
[
Eϵ[C(f − f̂T )(f − f̂T )

TCT ]
]
= Eϵ

[
n∑

i=1

(
f(xi)− f̂T (xi)

)2]

where we used linearity of expectation. By choosing C to be the evaluation functional, minimizing
the trace of the second moment of residuals corresponds to minimizing the mean squared estimation
error over the whole domain.

We then proceed by minimizing the upper bound of the trace of the second moment of the residuals,
as defined in Equation 2:

min
dπ∈Dsafe

U(dπ)

This objective corresponds to A-optimal design, i.e., taking s(·) = Tr(·). Using this objective, we
also include information about the unsafe region. See Appendix B.1 for an example aiming to provide
intuition on how this information is included. Note that using the D-optimal design, i.e., taking
s(·) = − log det((·)−1), is not possible as soon as there exist state-action pairs (s, a), (s′, a′) with
Φ(s, a) = Φ(s′, a′), since the matrix C then becomes singular and cannot be inverted.

4.2 Reweighting-Based Approach

Another option is to introduce a reweighting w : S × A → R to the objective. The idea is to put
more weight on state-action pairs that are highly correlated with unsafe state-action pairs:

min
dπ∈Dsafe

Uw(dπ) := s

C

 ∑
(s,a)∈S×A

Hdπ(s, a)w(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

−1

CT

 (3)

The weights are defined as follows:

w(s, a) =
∑

(s′,a′)∈Bunsafe

∣∣∣∣∣ Φ(s, a)TΦ(s′, a′)√
Φ(s, a)TΦ(s, a)

√
Φ(s′, a′)TΦ(s′, a′)

∣∣∣∣∣+ 1 (4)
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We define the weight as the sum of the correlation of a state-action pair with all the state-action
pairs in the unsafe state-action space plus one. If a state-action pair is entirely uncorrelated with the
unsafe region, the weight is one, and we recover the naive approach. The reweighting transports
information from the unsafe to the safe region. The higher the weight of a state-action pair, the higher
its correlation to the unsafe region and the higher the final visitation.

4.3 Optimization

We can minimize the convex objective mind∈Dsafe
Uw(d) over the polytope d ∈ Dsafe by using

Convex RL. Our Algorithm 1 is essentially the same as Markov-Design by Mutný et al. [7]. However,
there is a difference in the constraint set, and in the first step, we calculate the weighted objective as
defined in Equation 3 and Equation 4.

We use the ADAPTIVE method proposed in Mutný et al. [7]. The key idea of this method is to
incorporate information from previously executed trajectories to guide the selection of the next policy.
This involves gradually estimating the empirical distribution of visited states Zηt = dt. So the new
objective we optimize in each episode is Gt(d) := U(Zηt

t
t+1 + 1

t+1d).

Algorithm 1 Safe Active Exploration

Require: known deterministic MDP, known fixed unsafe set Bunsafe, Objective U , episodes T
1: Uw = Reweighting(Bunsafe, U) ▷ compute weighted objective
2: while t ≤ T do
3: Convex RL: solving mind∈Dsafe Gt(d) := Uw(Zηt

t
t+1 + 1

t+1d)

4: πmix,1 = πt; i = 1; dπmix,1 = Zηt
5: repeat
6: i = i+ 1
7: πi = argminπ∈Π

∑
s,a dπ(s, a)∇s,aGt(dπmix,i(s, a)) ▷ RL problem

8: dπi
= Density Estimation(πi) ▷ keep track of visitations

9: ai = argmina∈R Gt((1− a)dπmix,i + adπi
) ▷ line search

10: πmix,i+1 = (1− ai)πmix,i ∪ (ai, πi) ▷ update mixture policy
11: Update dπmix,i+1 = (1− ai)dπmix,i + aidπi

▷ update mixture policy visitations
12: until convergence
13: πt = Marginalize πmix

14: Interaction
15: Sample trajectory from τt ∼ πt (also as δτt ∼ qt)
16: Zηt+1 = Z t

t+1ηt + Z 1
t+1δt ▷ keep track of visited states

17: end while

5 Convergence Theory

Since our optimization scheme is essentially the same as in Mutný et al. [7], we base our convergence
results on their work. The evaluation functional approach in subsection 4.1 is already covered by
the theory introduced by Mutný et al. [7]. Accordingly, we only need to show convergence for the
reweighted objective. We first state a basic assumption on the naive objective without reweighting,
which follows directly from Assumption 1 in Mutný et al. [7].

Assumption 1 Let U : Dsafe → R be convex, differentiable, locally Lipschitz continuous in ∥ · ∥∞,
and locally smooth as:

U(d′) ≤ U(d) +∇U(d)⊤ (d′ − d) +
L′

2
∥d′ − d∥22 (5)

For d′, d ∈ Dsafe and global smoothness: L = maxL′

Now we show a relation between the smoothness of the reweighted and naive objective.

Proposition 1 Let Uw : Dsafe → R be the reweighted objective. The objective is convex and
differentiable. With Design A scalarization and invariant features Φ the objective is also locally
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Lipschitz continuous in ∥ · ∥∞, and locally smooth as:

Uw(d
′) ≤ Uw(d) +∇Uw(d)

⊤ (d′ − d) +
L′
w

2
∥d′ − d∥22 (6)

For d′, d ∈ Dsafe and with L′
w = cL′ where c ∈ (0, 1]. Also let Lw = maxL′

w

The reweighted objective has a smaller or equal smoothness constant than the naive objective without
reweighting. For the case where the weights are all one i.e., the unweighted case, we have c = 1.
Otherwise, higher weights result in a smaller c. This follows directly from the proof of Proposition 1,
which we postpone to Appendix A.2.

Note that for η, a distribution over trajectories, Mutný et al. [7] show U(d) = U(Zη) = F (η).
One can also easily show that Uw(d) = Uw(Zη) = Fw(η). We state the convergence in terms of
Fw(η), Fw(η

∗) but it can equally be stated in terms of Uw(d), Uw(d
∗).

5.1 High Probability Convergence

From Proposition 1 and using the previously introduced relation, we know that Fw(η) is smooth with
global smoothness constant Lw = cL, where c ∈ (0, 1]. However, Mutný et al. [7] point out that
Experimental Design objectives can have global smoothness L = T

λ . Thus global smoothness of Lw

is not sufficient for convergence. One way to mitigate this is to use smoothing due to Nesterov [8].
The smoothed objective Fw,µ has global smoothness Lw,µ = Lw

1+µLw
≤ 1

µ . Using smoothing, we can
show the following convergence bound:

Theorem 1 Under Proposition 1, with the smoothed objective using µ =
√
log T/T :

Fw(ηT )− Fw(η
∗) ≤ O

 1

T

√√√√ T∑
t=0

∥∇F (ηt)∥2∞ log(T/δ))

 (7)

With probability 1− δ over transition model and policy.

The convergence is the same as in Mutný et al. [7]. It is no surprise that we get the same convergence
result here. The main difference between F (η) and Fw(η) is in the local and global smoothness
constants. Since we use Nesterov smoothing [8], we bound away any dependency on the original
smoothness constants. For a detailed proof, visit Theorem 1 in the appendix of Mutný et al. [7] and
exchange Lµ with Lw,µ. As a result, we can also relax Proposition 1 and not require any smoothness
of the objective. Thus Theorem 1 holds for all scalarization designs and general correlation structures.
Overall with a reasonable upper bound on the gradient of F, the convergence is O(1/

√
T ) even for

non-smooth objectives.

5.2 Convergence in Expectation

From Proposition 1, we known that Fw(η) is smooth with local smoothness constant L′
w = cL′,

where c ∈ (0, 1]. Mutný et al. [7] conjecture that the local smoothness L′ increases with O(log T ).
Using the local smoothness, we can also show convergence in expectation:

Theorem 2 Under Proposition 1:

E [Fw(ηT )]− Fw(η
∗) ≤ O

(
c

T

T∑
k=0

Lk

1 + k

)
(8)

Where c ∈ (0, 1]

For a detailed proof, visit Theorem 4 in the appendix of Mutný et al. [7] and exchange the local
smoothness Lηk,1/k with Lw,ηk,1/k = cLηk,1/k = cLk. This convergence result is again very similar
to the one in Mutný et al. [7]. The only difference is the factor c ∈ (0, 1]. The proof for Proposition 1
shows that the factor depends on the magnitude of the weights w(s, a) in the objective. If there is no
reweighting, we have c = 1, and the convergence is the same as in Mutný et al. [7]. Otherwise, the
higher the weights, the smaller c, and the faster the convergence relative to Mutný et al. [7]. Overall
the convergence is O(log T/T ), given that the local smoothness decreases with O(log T ).
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6 Experiments

6.1 Invariant correlation - Synthetic grid world

(a) D-Design: unweighted objec-
tive

(b) D-Design: weighted objective (c) A-Design: evaluation functional

Figure 2: Using the unweighted objective 2a, the agent does not take into account the unsafe region
and uniformly visits different sectors in the diagonal. None of the trajectories go through the factory,
correlated with the unsafe region. The weighted objective 2b considers the unsafe region and visits
the safe factory. The objective with the evaluation functional 2c puts too much weight on the safe
factory, which leads all trajectories visiting this state.

Consider the synthetic grid world Fig.2 with dimensions 20x20, where the initial state is the bottom
left corner and the final is the top right corner. The environment is non-ergodic; the possible actions in
each state are to move up or right. The features Φ(s, a) are defined over states. Different pictograms
represent different sectors. As a result, states in the same sector have the same features and are
invariant. States in different sectors are independent. We define the unknown target f to be a
constant function. Safety is also defined over states, and the unsafe states can be observed with
shaded grey in Fig.2. In our experiment setting, we have twenty different sectors in the diagonal.
The agent can only pass through one diagonal sector in every trajectory because the environment is
non-ergodic. In Fig.2, we present the heatmap after ten trajectories for the D-design of the unweighted
and weighted objectives. As the evaluation function cannot be implemented for the D-design, we
did such experiments only for the A-design; see Fig.2. In Appendix B.3, we cite heatmaps of the
other experiments with A-design. To calculate f̂ , we simulate the observations and then perform a
kernelized regression. After every run, we compute the MSE. We present the results in Fig.3. The
figures do not include the initial MSE; see Appendix B.4. We conclude that both the unweighted
objective and the evaluation function lead to sub-optimal solutions. The unweighted objective does
not take into account the unsafe region, and the evaluation function puts too much weight on the safe
factory state. The weighted objective incentivizes the visitation of the safe factory state and estimates
the whole domain more consistently and efficiently.

(a) D-Design (b) D-Design (c) A-Design (d) A-Design

Figure 3: The median MSE of 20 reruns with 10% and 90% quantiles. On the left, one can see the
results of the D-Design for 10 and 15 trajectories. The weighted objective performs significantly
better for ten trajectories than the unweighted one. For 15 trajectories, the MSE of the unweighted
objective drops as the probability of sampling the safe factory increases. On the right, we see the
results of the A-Design. In green, we observe the MSE of the evaluation functional. As it only
samples from the safe factory state, we see a drop from the first trajectory, but it does not converge.
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6.2 General correlation - Chornobyl Exclusion Zone

To test our method on an example with non-invariant kernels, we used a spatial data set containing
data on radionuclide contamination in the Ukrainian Chornobyl Exclusion Zone [4]. In particular, we
use data that includes measurements of radiocaesium, radiostrontium, and soil chemistry parameters.
For the experiment, we assume access to all measurements except the concentration of radiostrontium
in the soil, which we want to estimate. This represents a scenario where data from previous years
is already available, but a new quantity previously not measured is to be estimated efficiently. To
simulate data collection, we created a graph containing a node for every measurement site with edges
between geographically nearest neighbors. The MDP corresponding to this graph has a state for
every node and actions to transition to a chosen neighbor deterministically. Upon arrival in a state,
the agent receives a noisy observation of the concentration of radiostrontium at this location. Safety
or inaccessibility in this scenario can be related to a known, geographically limited safety hazard or
simply to the absence of permission to enter certain areas. For this experiment, we classified two
arbitrarily selected regions as unsafe, making 419 of the 1074 states inaccessible. We chose the
number of trajectories to be T = 3, with a horizon of H = 30. As features, we used all 14 measured
variables and a constant feature normalized to be between 0 and 1. The variance of the Gaussian
observation noise is 0.1, and the regularization parameter for the kernel ridge regression is 0.1. The
results of the experiment can be seen in Fig. 4. One can notice that trajectories resulting from the
weighted objective visit more states to the north, where many inaccessible states are located. We
achieve a lower mean squared error on average using the weighted objective, although the variance
for both methods is quite large.

(a) (b) (c)

Figure 4: a) Heatmap of one run using the unweighted objective. The unsafe states are marked with
a cross and colored dark. b) Heatmap of one run using the weighted objective. c) Comparison of the
mean squared error of the estimated function values after each executed trajectory. We report the
median of 10 runs with 10% and 90% quantiles.

7 Conclusion

In this work, we introduced a new and highly relevant setting of safety-critical experimental design.
We defined a safe state-action density polytope that guarantees safe policies. We propose a new
reweighted experimental design objective that leverages the correlation of the unknown function
between unsafe and safe regions. We performed a theoretical analysis of the convergence of this
new objective. Finally, we validate the performance of the reweighted objective experimentally. We
designed a synthetic experiment with an invariant correlation structure and an experiment with real
data, and a general correlation structure. One limitation we notice is a high variance for both the
unweighted and weighted objectives. In the future, it may be worthwhile to investigate this and
additionally consider the setting of an adaptive safe region.
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A Proofs

A.1 Lemmas

Lemma 1 For w(s, a) ≥ 1, dπ(s, a) ≥ 0, Φ(s, a) = ei, where ei is a unit vector in Rd and
Bfeature(i) = {(s, a) ∈ S ×A : Φ(s, a) = ei} it holds:∑

(s,a)∈S×A

Hdπ(s, a)w(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

= diag


∑

(s,a)∈Bfwas set toeature(1)
Hdπ(s,a)w(s,a)

σ2
s,a

+ λ
T

...∑
(s,a)∈Bfeature(d)

Hdπ(s,a)w(s,a)
σ2
s,a

+ λ
T



= diag


c1
∑

(s,a)∈Bfeature(1)
Hdπ(s,a)

σ2
s,a

+ λ
T

...
cd
∑

(s,a)∈Bfeature(d)
Hdπ(s,a)

σ2
s,a

+ λ
T



= diag

c1...
cd

 diag


∑

(s,a)∈Bfeature(1)
Hdπ(s,a)

σ2
s,a

+ λ
T

...∑
(s,a)∈Bfeature(d)

Hdπ(s,a)
σ2
s,a

+ λ
T


= C

∑
(s,a)∈S×A

Hdπ(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

Importantly we have c1 . . . cd ≥ 1. It is easy to see that if all our weights are 1, we have c1 . . . cd = 1,
and the more large weights exist, the bigger c1 . . . cd.

A.2 Reweighted Smoothness

Proposition 1 Let Uw : Dsafe → R be the reweighted objective. The objective is convex, and
differentiable. With Design A scalarization and invariant features Φ the objective is also locally
Lipschitz continuous in ∥ · ∥∞, and locally smooth as:

Uw(d
′) ≤ Uw(d) +∇Uw(d)

⊤ (d′ − d) +
L′
w

2
∥d′ − d∥22 (9)

For d′, d ∈ Dsafe and with L′
w = cL′ where c ∈ (0, 1]. Also let Lw = maxL′

w

Proof. It is easy to see that the reweighted objective is differentiable and convex. Now let us first
recall the smoothness condition of the unweighted objective from Assumption 1:

U(d′) ≤ U(d) +∇U(d)⊤ (d′ − d) +
L′

2
∥d′ − d∥22 (10)

We now show that Uw(d) = c · U(d) with c ∈ (0, 1]

Uw(d) = Tr

 ∑
(s,a)∈S×A

Hdπ(s, a)w(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

−1

Lemma 1
= Tr

C
∑

(s,a)∈S×A

Hdπ(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

−1

= c · Tr

 ∑
(s,a)∈S×A

Hdπ(s, a)

σ2
s,a

Φ(s, a)Φ(s, a)T +
λI

T

−1

= c · U(d)

10



Where c ∈ (0, 1]. From Lemma 1, we see that c = 1 if we have no reweighting i.e., w(s, a) =
1∀(s, a) ∈ S ×A. Otherwise, the more large weights, the smaller c. Now we insert the expression
into relation 10 and get the final result:

1

c
Uw(d

′) ≤ 1

c
Uw(d) +

1

c
∇Uw(d)

⊤ (d′ − d) +
L′

2
∥d′ − d∥22

Uw(d
′) ≤ Uw(d) +∇Uw(d)

⊤ (d′ − d) +
cL′

2
∥d′ − d∥22

B Additional Material

B.1 Evaluation Functional Approach - Example

For simplicity, consider a setting where the features are defined over states, and the state space
consists of three disjoint sets S = S1 ∪S2 ∪S3, with Φ(s) = ei the i-th unit vector for s ∈ Si. Then,
for every s ∈ Si, Φ(s)Φ(s)T is a matrix with 1 at position ii and 0 everywhere else. We thus have

∑
s∈S

dπ(s)Φ(s)Φ(s)
T + λI =

∑s∈S1
dπ(s) + λ 0 0
0

∑
s∈S2

dπ(s) + λ 0
0 0

∑
s∈S3

dπ(s) + λ


And since this matrix is diagonal, we have

(∑
s∈S

dπ(s)Φ(s)Φ(s)
T + λI

)−1

=


1∑

s∈S1
dπ(s)+λ 0 0

0 1∑
s∈S2

dπ(s)+λ 0

0 0 1∑
s∈S3

dπ(s)+λ


If we take C to be the evaluation functional over the whole domain S , the matrix C will contain the
feature ei exactly |Si| times. Using that the trace is invariant under cyclic permutations, we have

Tr

C

(∑
s∈S

dπ(s)Φ(s)Φ(s)
T + λI

)−1

CT

 = Tr

CTC

(∑
s∈S

dπ(s)Φ(s)Φ(s)
T + λI

)−1


We have that

CTC =

[|S1| 0 0
0 |S2| 0
0 0 |S3|

]

Therefore

Tr

C

(∑
s∈S

dπ(s)Φ(s)Φ(s)
T + λI

)−1

CT

 =

3∑
i=1

|Si|∑
s∈Si

dπ(s) + λ

Now, assuming we have given a safe region Bsafe, we have the constraint dπ(s) = 0 for all
s ∈ Bunsafe := Bc

safe. Therefore the objective is equivalent to

3∑
i=1

|Si|∑
s∈Si∩Bsafe

dπ(s) + λ

Since we minimize this quantity, dπ(s) should be bigger where the cardinality of the corresponding
set is large, and fewer states of the same set are in the safe region.
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B.2 Transition Operator

The transition operator is defined as:

Kπ(x, x
′) :=

∑
a

P (x′|a, x)πh(a|x)

We get the state-action density by applying:

dh(s, a) =

(
h−1∏
i=1

Kπi
d0(s)

)
πh(s|a)

B.3 A-Design

(a) A-Design: unweighted objective (b) A-Design: weighted objective (c) A-Design: evaluation functional

Figure 5: Using the unweighted objective 5a, the agent does not take into account the unsafe region
and, for this run, does not samples from the safe factory. With the weighted objective 5b, the agent
samples from the safe factory and reduces the overall MSE. The reweighting with the evaluation
functional 5c puts too much weight on the safe factory and leads to a sub-optimal solution.

B.4 MSE log scale figures

As the initial MSE is too large, we excluded it from Fig.3 for better visualizations. Here we present
the complete figures in log scale.

(a) D-Design (b) D-Design (c) A-Design (d) A-Design

Figure 6
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